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This paper deals with the cationic ring-opening polymeriza-
tion of y-thiobutyrolactone (2) and y-thionobutyrolactone (3).
The ring-opening polymerization of 3 was carried out in bulk
at 100°C for 2h by various cationic initiators. Scandium tri-
fuoromethane-sulfonate induced the polymerization of 3, which
did not afford polythionoester but polythioester selectively. On
the other hand, the polymerization of 2 did not proceed with var-
ious cationic initiators under the similar conditions.

Sulfur-containing polymers such as polythiocarbonates and
polythioesters have received much attention because of their ex-
cellent optical and thermal properties.'”” Ring-opening polymer-
izations of four-, six-, and seven-membered lactones, and six-,
and seven-membered thiolactones are also known to produce
the corresponding polyesters and polythioesters, respectively.®”
However, among the lactones in various ring sizes, generally,
five-membered lactones such as y-butyrolactone (1) (Chart 1)
and y-thiobutyrolactone (2) do not polymerize to the corre-
sponding poly(thio)esters at all probably because of lower strain
energy.”!? Recently, we have reported that anionic and cationic
polymerization of &-thionocaprolactone afforded polythiocar-
boxylic O-ester and S-ester whose structure depends on the ini-
tiators used.!"!? In addition, it was found that polythioesters
could be synthesized not only by a chemical synthesis based
on the ring opening polymerization process, but also a bacterial
fermentation process. Steinbiichel et al. have reported that poly-
(3-hydroxybutyrate-co-3-mercaptobutyrate) was synthesized
by Ralstonia eutropha from appropriate carbon sources and
the genetically engineered Escherichia coli successfully pro-
duced poly(3-mercaptoalkanoate) from 3-mercaptoalkanoate.'?
However, they could not succeed in the biosynthesis of
poly(4-mercaptobutyrate)-containing  poly(3-hydroxybutyrate)
(PHB) in spite of successful biosynthesis of poly(4-hydroxy-
butyrate)-containing PHB.'* Here, we describe cationic ring-
opening polymerization of y-thionobutyrolactone (3: five-mem-
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bered lactone) to afford poly(4-mercaptobutyrate) (Scheme 1).

The monomer 3 was synthesized from 1 by using Lawes-
son’s reagent.!> Lanthanide triflates were used in this study as
cationic initiators because these catalysts might offer the advan-
tages of their stability toward the hydrolysis and there is no re-
port on ring-opening polymerization of thiolactones and thiono-
lactones by these catalysts.'® In this study, scandium trifuorome-
thane-sulfonate: Sc(OTf)s, yttrium trifluoromethane-sulfonate:
Y (OTf)s, ytterbium trifluoromethane-sulfonate: Yb(OTf)s, and
lanthanum trifluoromethane-sulfonate: La(OTf); were also em-
ployed as cationic catalysts. Table 1 summarizes the results of
cationic ring-opening polymerization of 3. Monomer conversion
was monitored from the "HNMR analysis of d-chloroform solu-
tion of the resulting mixture. At first, cationic polymerization of
1 and 2 was carried out in bulk at 100°C for 24 h. From the
'"HNMR analysis, these polymerizations did not take place prob-
ably because of thermodynamic reason. Next, the polymeriza-
tion of 3 was carried out using Sc(OTf); in bulk at 100°C
(Run 1 in Table 1) to result in that the conversion of 3 was
78% and the resulting mixture contained a small amount of un-
known unit besides the unreacted monomer and the correspond-
ing polymer. The resulting mixture was poured into n-hexane to
precipitate the polymer. The obtained polymer was also soluble
in common organic solvents such as toluene, CH,Cl,, and THF.
The number-average molecular weight and polydispersity were
determined by SEC to be 3400 and 2.2. SEC analysis of the re-
sulting polymer showed a unimodal distribution. The monomer 3
was completely recovered in the polymerization without
Sc(OTH)s (control experiment).

The structure of poly(3) was determined by 'HNMR,
I3C NMR, and IR spectroscopy. Figure 1 shows 'HNMR spec-
trum of poly(3) (Run 1 in Table 1). In the '"HNMR, three main
peaks were observed: a triplet peak at § 2.67 and & 2.94 were as-
signable to the «-, y-methylene protons of the thioester moiety,
a multiple peak at & 1.96 due to S-methylene protons of the thio-

Table 1. Ring-opening polymerization of 3 with various cation-
ic initiators®

- Conv.? Yield. d
Run Initiator (%) (%) MMy, /My)
1 Sc(OTf); 78 50 3400 (2.2)
2 Y(OTf)s3 79 42 4500 (2.7)
3 Yb(OTf); 84 45 3600 (2.9)
4 La(OTf)s 53 30 6300 (2.2)

4Condition: monomer 1.0 mmol, initiator 1.0 mol%, at bulk,
at 100°C, for 2h. PDetermined by '"HNMR spectroscopy
(CDCl3). “Isolated yield after precipitation into n-hexane.
4Determined by SEC based on polystyrene standards eluted
by CHCI; (n-hexane-insoluble part).
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Figure 1. IHNMR spectrum of poly(3) obtained in Run 1
(Table 1).

ester moiety. In the '3C NMR, four characteristic peaks were al-
so observed: the peak at § 198 assignable to the carbonyl carbon
of thioester moiety, the peaks at § 27.9, § 25.4, and § 42.6 were
assignable to the «-, ,3-, and y-methylene carbon of thioester
moiety, respectively (data not shown). The IR spectrum showed
peaks assignable to oxocarbonyl groups of thioesters at 1678
cm~! (data not shown). These spectroscopic data completely
agreed with those of the polymer obtained by another meth-
0d.>!” These results might support strongly that the polymeriza-
tion proceeds via isomerization of thionocarbonyl moieties. The
others catalysts showed catalytic activity for the polymerization
of 3 under similar conditions (Runs 2—4 in Table 1). Among test-
ed catalysts, La(OTf); (Run 4 in Table 1) showed less catalytic
activity. The structure of resulting polymer was also confirmed
by IR, "THNMR, and '*C NMR spectroscopy. This isomerizarion
was also observed in the polymerization catalyzed by the other
cationic initiators.

As mentioned previously, a plausible mechanism for the
ring-opening polymerization of 3 was proposed as follows
(Scheme 2).'? At first, a nucleophilic attack of the thionocarbon-
yl sulfur to the cationic initiator affords carbonium cation spe-
cies. Then, the thionocarbonyl sulfur nucleophilically attacks
to the o-position of the ether oxygene in the cyclic carbonium
ion, and the chain reaction of these progress may give the corre-
sponding polythioesters. On the basis of these results, the driving
force of ring-opening polymerization of 3 may depend on the
structure of thionocarbonyl group. Thought the strain energy
in the reaction is not directly related to the polymerizability,
the polymerizability of 3 with cationic initiators may reflect
the decrease of the activation energy according to the unstable-
ness of the thionocarbonyl group.!®

The thermal behavior of poly(3) obtained in Run 1 (Table 1)
was evaluated by thermogravimetric analysis (TGA) and differ-
ential scanning calorimetry (DSC), where its 5% weight loss
temperature (7ys) was 185°C and melting temperature (73,)
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was 90°C, and glass transition temperature (7y) was not ob-
served. The melting point of poly(3) was much higher than that
of oxyanalogues: poly(4-hydroxybutyrate).'?

In summary, cationic ring-opening polymerization of y-thi-
onobutyrolactone afforded the corresponding polythioester with
isomerization from thionocarbonyl to oxocarbonyl. It was ob-
served that the melting temperature is higher than that of the
polymer with equivalent oxygene atoms.
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